Questo sito utilizza cookie tecnici propri e di terze parti, necessari al suo funzionamento, e, con il tuo consenso, cookie di profilazione ed altri strumenti di tracciamento di terze parti, utili per esporre video ed analizzare il traffico al fine di misurare l'efficacia delle attività di comunicazione istituzionale. Puoi rifiutare i cookie non necessari e di profilazione cliccando su "Solo cookie tecnici". Puoi scegliere di acconsentirne l'utilizzo cliccando su "Accetta tutti" oppure puoi personalizzare le tue scelte cliccando su "Personalizza".
Per maggiori informazioni consulta la nostra privacy policy.

Solo cookie tecnici Personalizza Accetta tutti

vai al contenuto vai al menu principale vai alla sezione Accessibilità vai alla mappa del sito
Login  Docente | Studente | Personale | Italiano  English
 
Home page Home page

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Corso ECONOMIA
Curriculum BEHAVIOURAL AND ENVIRONMENTAL ECONOMICS
Anno Accademico 2024/2025
Anno 2
Crediti 8
Ore aula 48
Settore Scientifico Disciplinare SECS-S/06 - METODI MATEMATICI DELL'ECONOMIA E DELLE SCIENZE ATTUARIALI E FINANZIARIE
Attività formativa A scelta dello studente
Ambito A scelta dello studente

Docente

Foto Massimiliano FERRARA
Responsabile Massimiliano FERRARA
Crediti 8
Semestre Primo Ciclo Semestrale

Informazioni dettagliate relative all'attività formativa

Contents

Chapter 1. Statistical Learning Theory 

Chapter 2. Local Methods 

Chapter 3. Bias Variance and Cross-Validation 

Chapter 4. Regularized Least Squares 

Chapter 5. Regularized Least Squares Classification 

Chapter 6. Feature, Kernels and Representer Theorem 

Chapter 7. Regularization Networks 

Chapter 8. Logistic Regression 

Chapter 9. From Perceptron to SVM 

Chapter 10. Dimensionality Reduction

Chapter 11. Variable Selection 

Chapter 12. Density Estimation & Related Problems 

Chapter 13. Clustering Algorithms 

Chapter 14. Graph Regularization 

Chapter 15. Bayesian Learning 

Chapter 16. Neural Networks 


Ultimo aggiornamento: 05-08-2024

Massimiliano Ferrara: "Lectures Notes on Machine Learning and related tools". MIMEO, Reggio Calabria, 2024

Massimiliano Ferrara: Explainable artificial intelligence and mathematics: new frontiers (and challenges) of research not only as "AppliedMath", International Journal of Mathematical Analysis, Vol. 18, 2024, no. 1, 11-19

Tiziana Ciano and Massimiliano Ferrara: Karush-Kuhn-Tucker conditions and Lagrangian approach for improving machine learning techniques: A survey and new developments, AAPP, Vol 102, n.1, 2024


Further reading (for more):

Stuart Russel, Peter Norving (a cura di Francesco Amigoni): "Intelligenza Artificiale" Volume 2, Quarta edizione. PEARSON 2022 (Chapters from 19 to 24, 27-28)




Ultimo aggiornamento: 05-08-2024

In recent years, the convergence of Artificial Intelligence (AI) and Decision-Making processes has become a transformative force across a wide range of industries. The integration of AI technologies is reshaping entrepreneurship and management landscapes in sectors such as healthcare, finance, manufacturing, and retail in particular Supply Chain issues. 

Machine learning models and advanced neural networks, including Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Generative Adversarial Networks (GANs), have achieved significant breakthroughs in fields like computer vision, natural language processing, and predictive analytics. Their capabilities extend to practical applications in healthcare, business, and autonomous vehicles, where they excel in analyzing and leveraging complex data. However, the intricate architectures and inherent opacity of deep learning neural networks and supervised machine learning pose challenges to their comprehensive understanding and limit their application in critical areas, particularly in interdisciplinary domains. To tackle this issue and expand the scope of research, by this course we are broadening the focus of our mission to encompass successful applications of Machine Learning and Deep Learning Neural Networks. This expansion aims to showcase their effectiveness in extracting valuable insights from complex datasets, thereby enhancing understanding and application across various contexts.


Course Main Topics:

Explainable Artificial intelligence; 

Mathematical modeling and forecasting;

Machine and deep learning;

Nonlinear programming and AI;

Decision support Systems.


Ultimo aggiornamento: 05-08-2024

Mathematical Tools, Structures on Vector Spaces, Linear Algebra, Statistics and Informatics.


Ultimo aggiornamento: 05-08-2024

Lectures, Laboratory activities at the Decision LAB, Seminars and Workshops


Ultimo aggiornamento: 05-08-2024

None


Ultimo aggiornamento: 05-08-2024

Written and oral examination


Evaluation criteria:


30 cum laude: complete, in-depth and critical knowledge of the topics, excellent language skills, complete and original interpretative ability, full ability to independently apply knowledge to solve the proposed problems;


28 - 30: complete and in-depth knowledge of the topics, excellent language skills, complete and effective interpretative skills, able to independently apply the knowledge to solve the proposed problems;


24 - 27: knowledge of the topics with a good degree of mastery, good command of the language, correct and sure interpretative ability, good ability to correctly apply most of the knowledge to solve the proposed problems;


20 - 23: adequate knowledge of the topics but limited mastery of the same, satisfactory language skills, correct interpretative ability, more than sufficient ability to independently apply the knowledge to solve the proposed problems;


18 - 19: basic knowledge of the main topics, basic knowledge of the technical language, sufficient interpretative ability, sufficient ability to apply the acquired basic knowledge;




Ultimo aggiornamento: 05-08-2024


Ulteriori informazioni

Descrizione Descrizione
Information Geometry (dispensa) Descrizione
Seminario Deep Learning and ARO Modeling for financial markets (dispensa) Descrizione
Topological Data Analysis (dispensa) Descrizione

Elenco dei rievimenti:

Descrizione Avviso
Ricevimenti di: Massimiliano Ferrara
ORARIO DI RICEVIMENTO (dal 01 settembre 2024)
Il Prof. Massimiliano Ferrara riceve - previo appuntamento da concordare a mezzo email (massimiliano.ferrara@unirc.it) - di norma il LUNEDI’ e/o il MERCOLEDI’ dalle 11.00 alle 12.00 (eventualmente anche attraverso la piattaforma Microsoft TEAMS, sempre previo appuntamento concordato a mezzo e-mail)



Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online pubblicato. Per visualizzarlo, autenticarsi in area riservata.

Impostazione cookie

Cerca nel sito

 

Posta Elettronica Certificata

Direzione

Tel +39 0965.1695510

Fax +39 0965.1695343

Indirizzo e-mail


Biblioteca

Tel +39 0965.1695306-7-8

Fax +39 0965.1695345

Indirizzo e-mail

Orientamento

Tel +39 0965.1695364

Fax -

Indirizzo e-mail


Segreteria studenti

Tel +39 0965.655293

Fax +39 0965.654177

Indirizzo e-mail

Didattica

Giurisprudenza - +39 0965.1695402

Indirizzo e-mail

Economia - +39 0965.1695368

Indirizzo e-mail Indirizzo e-mail

Scienze Umane - +39 0965.1695404

Indirizzo e-mail Indirizzo e-mail Indirizzo e-mail


Social

Facebook

Twitter

YouTube

Instagram